skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hexagonal boron nitride (h-BN) is a promising material for next-generation electronics due to its unique optoelectronic and electronic properties. While the synthesis of h-BN on metallic substrates has been studied extensively, h-BN synthesis on CMOS-compatible substrates like Ge has not. Here, we report the growth of h-BN on Ge(001) from borazine via high-vacuum chemical vapor deposition. We find that the sublimation of Ge under high vacuum inhibits h-BN growth. To overcome this challenge, we place two Ge substrates face-to-face and achieve the growth of aligned h-BN islands and monolayer h-BN films. 
    more » « less
  2. The directed self-assembly (DSA) of block copolymers (BCPs) can be used to produce nanoscale patterns without the cost and process complexity of state-of-the-art optical lithography. Thus, DSA may be useful in a wide variety of semiconductor applications such as fin field-effect transistors and biosensors. To create technologically useful patterns with aligned BCP domains, conventional DSA mechanisms often rely on topographically complex structures or high-resolution chemical patterns to direct the self-assembly, that are difficult to fabricate. In comparison, a newly discovered mechanism for DSA, termed boundary-directed epitaxy (BDE), utilizes chemical contrast at the boundaries between a substrate and relatively wide chemical stripe. Here, we demonstrate the use of BDE to template the fabrication of sub-10 nm features for the first time. BDE is used in conjunction with selective infiltration to create ultranarrow line-space arrays of alumina. These results demonstrate a proof-of-concept for BDE as a method for ultrahigh-resolution feature formation. 
    more » « less
  3. hBN is deposited onto semiconducting substrates with control over the domain alignment (including close-to-unidirectional alignment) and monolayer quality. 
    more » « less
  4. Remote epitaxy is promising for the synthesis of lattice-mismatched materials, exfoliation of membranes, and reuse of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. Alternative mechanisms such as pinhole-seeded epitaxy or van der Waals epitaxy can often explain the resulting films. Here, we show that growth of the Heusler compound GdPtSb on clean graphene/sapphire produces a 30° rotated (R30) superstructure that cannot be explained by pinhole epitaxy. With decreasing temperature, the fraction of this R30 domain increases, compared to the direct epitaxial R0 domain, which can be explained by a competition between remote versus pinhole epitaxy. Careful graphene/substrate annealing and consideration of the relative lattice mismatches are required to obtain epitaxy to the underlying substrate across a series of other Heusler films, including LaPtSb and GdAuGe. The R30 superstructure provides a possible experimental fingerprint of remote epitaxy, since it is inconsistent with the leading alternative mechanisms. 
    more » « less
  5. null (Ed.)